Gravitational Waves Do Not Carry Energy-Momentum

Volume 5, Issue 1, February 2020     |     PP. 1-28      |     PDF (363 K)    |     Pub. Date: May 10, 2020
DOI:    223 Downloads     5788 Views  

Author(s)

Zhaoyan Wu, Center for Theoretical Physics, Jilin University, China

Abstract
From a geometric perspective, we proved the following conclusions, that are against mainstream scholars’ viewpoint. (i) Vanishing of the covariant divergence of matter energy­ momentum flux density in entire spacetime is a conservation law of matter energy-momentum. It reads the net increase of matter energy-momentum in any infinitesimal neighborhood of spacetime is zero. Hence, introducing gravitational energy-momentum does not save, but destroys the law of energy-momentum conservation. (ii) Interaction or force in physics always means exchange of energy-momentum. The spacetime metric field (gravitational field in general relativity) does not exchange energy-momentum with all mass points and matter fields. Therefore, the metric field of spacetime does not carry energy-momentum, it's not a force field, and gravity is not a natural force. The spacetime metric field is the geometrical aspect of moving matter 4-dimensional continuum. It is not a matter field itself.

Keywords
gravitational energy-momentum, energy-momentum conservation in general relativity

Cite this paper
Zhaoyan Wu, Gravitational Waves Do Not Carry Energy-Momentum , SCIREA Journal of Physics. Volume 5, Issue 1, February 2020 | PP. 1-28.

References

[ 1 ] A. Einstein, Sitzungsber K. preuss. Akacl. Wiss. 2, 688(1916)
[ 2 ] A. Einstein, Sitzungsber K. preuss. Akacl. Wiss. 2, 154(1918)
[ 3 ] B.P. Abbott, et. al. (LIGO), Phys. Rev. Lett. 116, 061102 (2016)
[ 4 ] R.P. Feynman, et al, Feynman Lectures on Gravitation, Westview Press, Boulder (2002).
[ 5 ] B.P. Abbott, et al. Phys. Rev. Lett. 116, 241103 (2016).
[ 6 ] B.P. Abbott, et al. Phys. Rev. Lett. 118, 221101 (2017).
[ 7 ] B.P. Abbott, et al. Phys. Rev. Lett. 119, 141101 (2017).
[ 8 ] B.P. Abbott, et al. Phys. Rev. Lett. 119, 161101 (2017)
[ 9 ] Z. Wu, Commun. Theor. Phys. 65 716-730 (2016).
[ 10 ] A. Einstein, Berl. Ber. 178 (1915), 448 (1918).
[ 11 ] H. Bondi, Proc. R. Soc. Lond. A 427 249-258 (1990).
[ 12 ] S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).
[ 13 ] J.M. Nester, et al, Dynamic geometry and Gravitational Energy, (2004).
[ 14 ] H. Bauer, Physikalische Zeitschrift, 19 163 (1918).
[ 15 ] L.D. Landau and E.M.Lifshitz, The Classical Theory of Fields, 2nd ed. (Reading, Mass.: Addison-Wesley, 1962).
[ 16 ] R.C. Tohnan, Phys. Rev. 35, 875 (1930).
[ 17 ] A. Trautman, in Gravitation: An Introduction to Current Research, ed. L. Witten (Wiley, New York, 1962), 169-198.
[ 18 ] Papapetrou, Proc.Roy. Irish Acad. A 52, 11-23 (1948).
[ 19 ] P.G. Bergmann and R. Thompson, Phys. Rev. 89, 400-407 (1953).
[ 20 ] C. Mller, Ann. Phys. 4, 347-371 (1958).
[ 21 ] C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973).
[ 22 ] A. Komar, Physical Rev. 113 (1959) 934.
[ 23 ] R. Arnowitt, S. Deser, and C.W. Misner, The Dynamics of General Rela,­ tivity, in Gravitation: A Introduction to Current Research, ed. L. Witten, Wiley, New York (1962).
[ 24 ] H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Proc. Roy. Soc. London A 269 {1962} 21.
[ 25 ] R. Schoen and S.-T. Yau, Commun. Math. Phys. 79, 231 (1981).
[ 26 ] E. Witten, Commun. Math. Phys. 80, 381(1981).
[ 27 ] L.B. Szabados, Living Rev. Relativity 7, 4 (2004).
[ 28 ] J.L. Synge, Relativity: The General Theory, North-Holland Publishing Company, Amsterdam (1960).