ISSN: 2706-8870
Volume 3, Number 1 (2018)
Year Launched: 2016

Nanocarriers For Drug Delivery

Volume 3, Issue 1, February 2018     |     PP. 23-29      |     PDF (147 K)    |     Pub. Date: January 14, 2018
DOI:    319 Downloads     7562 Views  

Author(s)

Mateja Primožič, Faculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia
Željko Knez, Faculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia
Jitendra Kumar Pandey, University of Petroleum and Energy Studies (UPES), Dehradun, India
Maja Leitgeb, Faculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia

Abstract
Nanotechnology advances in drug delivery deal with the development of synthetic nanometer sized targeting delivery systems for therapeutic agents. Nanoparticles (NPs) as drug delivery system have received much attention in recent years. They can provide a selective targeting and can be tailor-made with the desired characteristics offered by the versatility of polymer chemistry. NPs have the high potential to improve the biodistribution of drugs by protecting them from degradation, delivering them directly to the target place and preventing them from affecting healthy tissues.

Keywords
nanoparticels, nanocarrier, drug delivery system

Cite this paper
Mateja Primožič, Željko Knez, Jitendra Kumar Pandey, Maja Leitgeb, Nanocarriers For Drug Delivery , SCIREA Journal of Clinical Medicine. Volume 3, Issue 1, February 2018 | PP. 23-29.

References

[ 1 ] Dykman, L., Khlebtsov, N. (2012) Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41(6):2256–2282.
[ 2 ] Knuschke, T., Bayer, W., Rotan, O. Sokolova, V., Wadwa, M., Kirschning C.J., et al. (2014) Prophylactic and therapeutic vaccination with a nanoparticle-based peptide vaccine induces efficient protective immunity during acute and chronic retroviral infection. Nanomedicine 10(8):1787–1798.
[ 3 ] Wang, B.-Z., Quan. F.-S., Kang, S.-M., Bozja, J., Skountzou, I., Compans, R.W. (2008) Incorporation of membrane-anchored flagellin into influenza virus-like particles enhances the breadth of immune responses. J. Virol. 82(23):11813–11823.
[ 4 ] Moon, J.J., Suh, H., Li, A.V., Ockenhouse, C.F., Yadava, A., Irvine, D.J. (2012) Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. Proc. Natl. Acad. Sci. USA 109(4):1080–1085.
[ 5 ] De, M., Ghosh, P.S., Rotello, V.M. (2008) Applications of nanoparticles in biology. Adv. Mater. Deerfield. 20(22):4225–4241.
[ 6 ] Sagnella, S.M., McCarroll, J.A., Kavallaris, M. (2014) Drug delivery: Beyond active tumour targeting. Nanomedicine NMB 10:1131-1137.
[ 7 ] Niemirowicz, K., Car, H. (2012) Nanocarriers in modern drug delivery systems. CHEMIK 66(8):868-881.
[ 8 ] Shrestha, H., Bala, R., Arora, S. (2014) Lipid-Based Drug Delivery Systems. J. Pharmaceutics 2014: Article ID 801820, 10 pages.
[ 9 ] Puri, A., Loomis, K., Smith, B., Lee, J.H., Yavlovich, A., Heldman, E., Blumenthal, R. (2009) Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic. Crit. Rev. Ther. Drug. Carrier Syst. 26(6):523–580.
[ 10 ] Wang, C., Zhu, W., Wang, B.-Z. (2017) Dual-linker gold nanoparticles as adjuvanting carriers for multivalent display of recombinant influenza hemagglutinin trimers and flagellin improve the immunological responses in vivo and in vitro. Int. J. Nanomedicine 12:4747–4762.
[ 11 ] Guo, j., Rahme, K., He, Y., Li, L.-L., Holmes, J.D., O’Driscoll, C. M. (2017) Gold nanoparticles enlighten the future of cancer theranostics. Int. J. Nanomedicine 12 6131–6152.
[ 12 ] Ulbrich, K., Holá, K., Šubr, V., Bakandritsos, A., Tuček, J., Zbořil, R. (2016) Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 116(9):5338–5431.
[ 13 ] Leitgeb, M., Hojnik Podrepšek, G., Knez, Ž. (2014) Magnetic nanoparticles: synthesis, physicochemical properties and role in biomedicine, (Nanotechnology science and technology) Sabbas, N.P. (ed.), Nova Science Publishers, New York, USA, pp. 201-230.
[ 14 ] Bhadra, U., Bhadra, M.P., Bulusu, J., Yadav, J.S. (2014) Application of Nanotechnology in Drug Delivery Sezer, A.D. (Ed.), InTech, DOI: 10.5772/58412.
[ 15 ] Romano-Feinholz, S., Salazar-Ramiro, A., Muñoz-Sandoval, E., Magaña-Maldonado, R., Hernández Pedro, N., Rangel López, E., et al. (2017) Cytotoxicity induced by carbon nanotubes in experimental malignant glioma. Int. J. Nanomedicine 12 6005–6026.
[ 16 ] Chen, G. (2012) Nanotube-Based Controlled Drug Delivery. Pharmaceut Anal Acta 3:e136.
[ 17 ] Daglar, B., Ozgur, E., Corman, M.E., Uzund, L., Demirel, G.B. (2014) Polymeric nanocarriers for expected nanomedicine: current challenges and future prospects. RSC Adv. 4:48639-48659.
[ 18 ] Grottkau, B.E., Cai, X.X., Wang, J., Yang, X.M., Lin, Y.F. (2013) Polymeric Nanoparticles for a Drug Delivery System. Curr. Drug. Metab. 14(8):840-846.
[ 19 ] Kesharwani, P., Jain, K., Jain, N.K. (2014) Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci. 39(2):268-307.
[ 20 ] Kannan, R.M., Nance, E., Kannan, S., Tomalia, D.A. (2014) Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J. Intern. Med. 276(6):579-617.
[ 21 ] Caminade, A.-M., Turrin C.-O. (2014) Dendrimers for drug delivery. J. Material. Chem. B 2(26):4055-4066.