High-glucose(HG)triggers of Autophagy Affects the Expression of NF-KB and Apoptosis in Müller Cells
DOI: 10.54647/cm321032 90 Downloads 4762 Views
Author(s)
Abstract
Purpose: Autophagy pathway might be involved in the production of pro-inflammatory cytokines and apoptosis in HG-stimulated Müller cells, though details of the mechanism remain largely not currently known.
Methods: In this experimental research, primary SD rat retinal Miller cells were exposed to normal glucose (NG) or 3 h, 6 h, 12 h, 24 h, 36 h of high glucose. LC3I/LC31I, P62, and Beclin-1 protein expression was examined by Western blot analysis in the various experimental groups. And in fluorescence microscopy experiments, autophagy was evaluated by the autophagy markers LC3I/LC3ll and P62. The formation of autophagosomes and autolysosomes were examined by electron microscopy. TUNEL assay was used to detect apoptosis in high glucose Müller cells. One-way analysis of variance was used to compare data between different groups.
Results: In the present study, the retinas Müller cell expose to HG for early stage (6h), HG increased autophagy by promoting the formation of autophagosomes, increasing lysosomal acidification, stimulating autophagic flux, meanwhile, protecting the cells from apoptosis and inflammation. However, decreased autophagy-related maker protein (Beclin-1 and LC3Ⅱ/LC3Ⅰ) and autophagic flux were detected in the HG-stimulated Müller cells at later time points (24 h) and 3MA, restrain autophagic can increase both apoptosis and NF-κB phosphorylation in the Müller cell.
Conclusions: These results highlight that HG regulates autophagy in different periods, and autophagy is a protective effect may account for the defense against Müller cell inflammation. This finding might be valuable for the study of DR pathogenesis.
Keywords
Müller cells; Autophagy; Diabetes retinopathy; Apoptosis; NF-KB
Cite this paper
Li Wang, Laiqing Xie, Xun Xu, Xiaofeng Zhang, E. Song,
High-glucose(HG)triggers of Autophagy Affects the Expression of NF-KB and Apoptosis in Müller Cells
, SCIREA Journal of Clinical Medicine.
Volume 8, Issue 2, April 2023 | PP. 101-123.
10.54647/cm321032
References
[ 1 ] | Carrasco E, Hernandez C, Miralles A, Huguet P, Farres J, Simo R. Lower somatostatin expression is an early event in diabetic retinopathy and is associated with retinal neurodegeneration. Diabetes Care, 2007; 30: 2902-8.doi:10.2337/dc07-033 2. |
[ 2 ] | Lopes de Faria JM, Russ H, Costa VP. Retinal nerve fibre layer loss in patients with type 1 diabetes mellitus without retinopathy. Br J Ophthalmol, 2002; 86: 725-8. doi:10.1136/bjo.86.7.725. |
[ 3 ] | Ghirlanda G, Di Leo MA, Caputo S, Falsini B, Porciatti V, Marietti G, Greco AV. Detection of inner retina dysfunction by steady-state focal electroretinogram pattern and flicker in early IDDM. Diabetes, 1991; 40: 1122-7. doi: 10.2337 / diab. 40.9. 1122. |
[ 4 ] | Barber AJ, Gardner TW, Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci, 2011; 52: 1156-63.doi:10.1167/iovs.10-6293. |
[ 5 ] | Puro DG. Diabetes-induced dysfunction of retinal Muller cells. Trans Am Ophthalmol Soc, 2002; 100: 339-52 |
[ 6 ] | Mizutani M, Gerhardinger C, Lorenzi M. Muller cell changes in human diabetic retinopathy. Diabetes, 1998; 47: 445-9.doi:10.2337/diabetes.47.3.445. |
[ 7 ] | Gerhardinger C, Costa MB, Coulombe MC, Toth I, Hoehn T, Grosu P. Expression of acute-phase response proteins in retinal Muller cells in diabetes. Invest Ophthalmol Vis Sci, 2005; 46: 349-57.doi:10.1167/iovs.04-0860. |
[ 8 ] | Kusner LL, Sarthy VP, Mohr S. Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase: a role in high glucose-induced apoptosis in retinal Muller cells. Invest Ophthalmol Vis Sci, 2004; 45: 1553-61. |
[ 9 ] | Mu H, Zhang XM, Liu JJ, Dong L, Feng ZL. Effect of high glucose concentration on VEGF and PEDF expression in cultured retinal Muller cells. Mol Biol Rep, 2009; 36: 2147-51.doi:10.1007/s11033-008-9428-8. |
[ 10 ] | Wang LL, Chen H, Huang K, Zheng L. Elevated histone acetylations in Muller cells contribute to inflammation: a novel inhibitory effect of minocycline. Glia, 2012; 60: 1896-905.doi:10.1002/glia.22405. |
[ 11 ] | Yego EC, Vincent JA, Sarthy V, Busik JV, Mohr S. Differential regulation of high glucose-induced glyceraldehyde-3-phosphate dehydrogenase nuclear accumulation in Muller cells by IL-1beta and IL-6. Invest Ophthalmol Vis Sci, 2009; 50: 1920-8.doi:10.1167/iovs.08-2082. |
[ 12 ] | Liu X, Ye F, Xiong H, Hu DN, Limb GA, Xie T, Peng L, Zhang P, Wei Y, Zhang W, et al. IL-1beta induces IL-6 production in retinal Muller cells predominantly through the activation of p38 MAPK/NF-kappaB signaling pathway.Exp Cell Res, 2015; 331:223-31.doi:10.1016/j.yexcr.2014.08.040. |
[ 13 ] | Abu el Asrar AM, Maimone D, Morse PH, Gregory S, Reder AT. Cytokines in the vitreous of patients with proliferative diabetic retinopathy. Am J Ophthalmol, 1992; 114: 731-6.doi:10.1016/s0002-9394(14)74052-8. |
[ 14 ] | Brooks HL, Jr., Caballero S, Jr., Newell CK, Steinmetz RL, Watson D, Segal MS, Harrison JK, Scott EW, Grant MB. Vitreous levels of vascular endothelial growth factor and stromal-derived factor 1 in patients with diabetic retinopathy and cystoid macular edema before and after intraocular injection of triamcinolone. Arch Ophthalmol, 2004; 122: 1801-7.doi:10.1001/archopht.122.12.1801. |
[ 15 ] | Demircan N, Safran BG, Soylu M, Ozcan AA, Sizmaz S. Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy. Eye (Lond), 2006; 20: 1366-9.doi:10.1038/sj.eye.6702138. |
[ 16 ] | Hernandez C, Segura RM, Fonollosa A, Carrasco E, Francisco G, Simo R. Interleukin-8, monocyte chemoattractant protein-1 and IL-10 in the vitreous fluid of patients with proliferative diabetic retinopathy. Diabet Med, 2005; 22: 719-22.doi:10.1111/j.1464-5491.2005.01538.x. |
[ 17 ] | Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell, 2010; 140: 313-26.doi:10.1016/j.cell.2010.01.028. |
[ 18 ] | Kraft C, Peter M, Hofmann K. Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol, 2010; 12: 836-41.doi:10.1038/ncb0910-836. |
[ 19 ] | Zhao Z, Fux B, Goodwin M, Dunay IR, Strong D, Miller BC, Cadwell K, Delgado MA, Ponpuak M, Green KG, et al. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe, 2008; 4: 458-69.doi:10.1016/j.chom.2008.10.003. |
[ 20 ] | Zhao YO, Khaminets A, Hunn JP, Howard JC. Disruption of the Toxoplasma gondii parasitophorous vacuole by IFNgamma-inducible immunity-related GTPases (IRG proteins) triggers necrotic cell death. PLoS Pathog, 2009; 5: e1000288.doi: 10.1371/ journal.ppat.1000288. |
[ 21 ] | Lopes de Faria JM, Duarte DA, Montemurro C, Papadimitriou A, Consonni SR, Lopes de Faria JB. Defective Autophagy in Diabetic Retinopathy. Invest Ophthalmol Vis Sci, 2016; 57: 4356-66.doi:10.1167/iovs.16-19197. |
[ 22 ] | Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell, 2009; 137: 1001-4.doi:10.1016/j.cell.2009.05.023. |
[ 23 ] | Chai P, Ni H, Zhang H, Fan X. The Evolving Functions of Autophagy in Ocular Health: A Double-edged Sword. Int J Biol Sci, 2016; 12: 1332-1340.doi:10.7150/ ijbs.16245. |
[ 24 ] | Frost LS, Mitchell CH, Boesze-Battaglia K. Autophagy in the eye: implications for ocular cell health. Exp Eye Res, 2014; 124: 56-66.doi:10.1016/j.exer.2014.04.010. |
[ 25 ] | Swart C, Du Toit A, Loos B. Autophagy and the invisible line between life and death. Eur J Cell Biol, 2016; 95: 598-610.doi:10.1016/j.ejcb.2016.10.005. |
[ 26 ] | Chinskey ND, Besirli CG, Zacks DN. Retinal cell death and current strategies in retinal neuroprotection. Curr Opin Ophthalmol, 2014; 25: 228-33.doi:10.1097/ICU. 0000000000000043. |
[ 27 ] | Russo R, Berliocchi L, Adornetto A, Amantea D, Nucci C, Tassorelli C, Morrone LA, Bagetta G, Corasaniti MT. In search of new targets for retinal neuroprotection: is there a role for autophagy? Curr Opin Pharmacol, 2013; 13: 72-7.doi:10.1016/j.coph. 2012.09.004. |
[ 28 ] | Boya P, Esteban-Martinez L, Serrano-Puebla A, Gomez-Sintes R, Villarejo-Zori B. Autophagy in the eye: Development, degeneration, and aging. Prog Retin Eye Res, 2016; 55: 206-245.doi:10.1016/j.preteyeres.2016.08.001. |
[ 29 ] | Li YJ, Jiang Q, Cao GF, Yao J, Yan B. Repertoires of autophagy in the pathogenesis of ocular diseases. Cell Physiol Biochem, 2015; 35: 1663-76.doi:10.1159/000373980. |
[ 30 ] | Ma JH, Wang JJ, Zhang SX. The unfolded protein response and diabetic retinopathy. J Diabetes Res, 2014; 2014: 160140.doi:10.1155/2014/160140. |
[ 31 ] | Fu D, Yu JY, Yang S, Wu M, Hammad SM, Connell AR, Du M, Chen J, Lyons TJ. Survival or death: a dual role for autophagy in stress-induced pericyte loss in diabetic retinopathy. Diabetologia, 2016; 59: 2251-61.doi:10.1007/s00125-016-4058-5. |
[ 32 ] | Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, Gilpin C, Levine B. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell, 2007; 128: 931-46.doi:10.1016/j.cell.2006.12.044. |
[ 33 ] | Mellen MA, de la Rosa EJ, Boya P. The autophagic machinery is necessary for removal of cell corpses from the developing retinal neuroepithelium. Cell Death Differ, 2008; 15: 1279-90.doi:10.1038/cdd.2008.40. |
[ 34 ] | Wang C, Hu Q, Shen HM. Pharmacological inhibitors of autophagy as novel cancer therapeutic agents. Pharmacol Res, 2016; 105: 164-75.doi:10.1016/j.phrs.2016.01.028. |
[ 35 ] | Peixoto EB, Papadimitriou A, Teixeira DA, Montemurro C, Duarte DA, Silva KC, Joazeiro PP, Lopes de Faria JM, Lopes de Faria JB. Reduced LRP6 expression and increase in the interaction of GSK3beta with p53 contribute to podocyte apoptosis in diabetes mellitus and are prevented by green tea. J Nutr Biochem, 2015; 26: 416-30.doi:10.1016/j.jnutbio.2014.11.012. |
[ 36 ] | Pierzynska-Mach A, Janowski PA, Dobrucki JW. Evaluation of acridine orange, LysoTracker Red, and quinacrine as fluorescent probes for long-term tracking of acidic vesicles. Cytometry A, 2014; 85: 729-37.doi:10.1002/cyto.a.22495. |
[ 37 ] | Duarte DA, Rosales MA, Papadimitriou A, Silva KC, Amancio VH, Mendonca JN, Lopes NP, de Faria JB, de Faria JM. Polyphenol-enriched cocoa protects the diabetic retina from glial reaction through the sirtuin pathway. J Nutr Biochem, 2015; 26: 64-74.doi:10.1016/j.jnutbio.2014.09.003. |
[ 38 ] | Wang L, Sun X, Zhu M, Du J, Xu J, Qin X, Xu X, Song E. Epigallocatechin-3-gallate stimulates autophagy and reduces apoptosis levels in retinal Muller cells under high-glucose conditions. Exp Cell Res, 2019; 380: 149-158.doi:10.1016/j.yexcr. 2019.04.014. |
[ 39 ] | Mehrpour M, Esclatine A, Beau I, Codogno P. Overview of macroautophagy regulation in mammalian cells. Cell Res, 2010; 20: 748-62.doi:10.1038/cr.2010.82. |
[ 40 ] | Nikoletopoulou V, Papandreou ME, Tavernarakis N. Autophagy in the physiology and pathology of the central nervous system. Cell Death Differ, 2015; 22: 398-407. doi:10.1038/cdd.2014.204. |
[ 41 ] | Galluzzi L, Bravo-San Pedro JM, Blomgren K, Kroemer G. Autophagy in acute brain injury. Nat Rev Neurosci, 2016; 17: 467-84.doi:10.1038/nrn.2016.51. |
[ 42 ] | Singh AK, Kashyap MP, Tripathi VK, Singh S, Garg G, Rizvi SI. Neuroprotection Through Rapamycin-Induced Activation of Autophagy and PI3K/Akt1/mTOR/CREB Signaling Against Amyloid-beta-Induced Oxidative Stress, Synaptic/ Neurotransmission Dysfunction, and Neurodegeneration in Adult Rats. Mol Neurobiol, 2017; 54: 5815-5828.doi:10.1007/s12035-016-0129-3. |
[ 43 ] | Wang ZY, Liu JY, Yang CB, Malampati S, Huang YY, Li MX, Li M, Song JX. Neuroprotective Natural Products for the Treatment of Parkinson's Disease by Targeting the Autophagy-Lysosome Pathway: A Systematic Review. Phytother Res, 2017; 31: 1119-1127.doi:10.1002/ptr.5834. |
[ 44 ] | Fan B, Sun YJ, Liu SY, Che L, Li GY. Neuroprotective Strategy in Retinal Degeneration: Suppressing ER Stress-Induced Cell Death via Inhibition of the mTOR Signal. Int J Mol Sci, 2017; 18.doi:10.3390/ijms18010201. |
[ 45 ] | Noda T, Matsuura A, Wada Y, Ohsumi Y. Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun, 1995; 210: 126-32.doi:10.1006/bbrc.1995.1636. |
[ 46 ] | Aubert S, Gout E, Bligny R, Marty-Mazars D, Barrieu F, Alabouvette J, Marty F, Douce R. Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J Cell Biol, 1996; 133: 1251-63.doi:10.1083/jcb. 133.6.1251. |
[ 47 ] | Reunanen H, Hirsimaki P. Studies on vinblastine-induced autophagocytosis in mouse liver. IV. Origin of membranes. Histochemistry, 1983; 79: 59-67.doi:10.1007/ BF00494342. |
[ 48 ] | Wu Z, Chang PC, Yang JC, Chu CY, Wang LY, Chen NT, Ma AH, Desai SJ, Lo SH, Kung HJ,et al. Autophagy Blockade Sensitizes Prostate Cancer Cells towards Src Family Kinase Inhibitors. Genes Cancer, 2010; 1: 40-9.doi: 10.1177/ 1947601909358324. |
[ 49 ] | Chhipa RR, Wu Y, Ip C. AMPK-mediated autophagy is a survival mechanism in androgen-dependent prostate cancer cells subjected to androgen deprivation and hypoxia. Cell Signal, 2011; 23: 1466-72.doi:10.1016/j.cellsig. 2011.04.008. |
[ 50 ] | Yao J, Qiu Y, Frontera E, Jia L, Khan NW, Klionsky DJ, Ferguson TA, Thompson DA, Zacks DN. Inhibiting autophagy reduces retinal degeneration caused by protein misfolding. Autophagy, 2018; 14: 1226-1238.doi:10.1080/15548627.2018.1463121. |
[ 51 ] | Piano I, Novelli E, Della Santina L, Strettoi E, Cervetto L, Gargini C. Involvement of Autophagic Pathway in the Progression of Retinal Degeneration in a Mouse Model of Diabetes. Front Cell Neurosci, 2016; 10: 42.doi:10.3389/fncel.2016.00042. |
[ 52 ] | Lapaquette P, Guzzo J, Bretillon L, Bringer MA. Cellular and Molecular Connections between Autophagy and Inflammation. Mediators Inflamm, 2015; 2015: 398483.doi:10.1155/2015/398483. |
[ 53 ] | Rodriguez-Muela N, Hernandez-Pinto AM, Serrano-Puebla A, Garcia-Ledo L, Latorre SH, de la Rosa EJ, Boya P. Lysosomal membrane permeabilization and autophagy blockade contribute to photoreceptor cell death in a mouse model of retinitis pigmentosa. Cell Death Differ, 2015; 22: 476-87.doi:10.1038/cdd.2014.203. |